SU.86.86Homo sapiens (Human)Cancer cell line

Also known as: SU.86, SU8686, Su86_86, SU86_86, SU86-86, SU86.86, Su-86-86, SU-86-86, SU 86.86, Su.86.86, Su_86_96, SU-88-86

🤖 AI SummaryBased on 10 publications

Quick Overview

SU.86.86 is a human pancreatic cancer cell line used in cancer research.

Detailed Summary

SU.86.86 is a human pancreatic cancer cell line derived from a pancreatic ductal adenocarcinoma. It is widely used in research to study the genetic and molecular mechanisms of pancreatic cancer. This cell line has been characterized for its genomic alterations, including allelic loss and homozygous deletions, which are common in pancreatic cancer. SU.86.86 has been utilized in studies involving metabolite profiling, gene expression analysis, and drug sensitivity testing. It is part of several large-scale cancer cell line panels, such as the Cancer Cell Line Encyclopedia (CCLE) and the Cancer Genome Atlas (TCGA), which provide comprehensive genomic and transcriptomic data for research purposes. The cell line is also used to investigate the role of specific genes and pathways in cancer progression and therapeutic response.

Research Applications

Genomic profilingMetabolite profilingDrug sensitivity testingGene expression analysisCancer biology research

Key Characteristics

Genomic alterations including allelic loss and homozygous deletionsUsed in large-scale cancer cell line panelsPart of the Cancer Cell Line Encyclopedia (CCLE) and TCGAUtilized for studying pancreatic cancer mechanisms
Generated on 6/20/2025

Basic Information

Database IDCVCL_3881
SpeciesHomo sapiens (Human)
Tissue SourceLiver[UBERON:UBERON_0002107]

Donor Information

Age57
Age CategoryAdult
SexFemale
Racecaucasian

Disease Information

DiseasePancreatic adenocarcinoma
LineagePancreas
SubtypePancreatic Adenocarcinoma
OncoTree CodePAAD

DepMap Information

Source TypeATCC
Source IDACH-000114_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Gly245Ser (c.733G>A)UnspecifiedSomatic mutation acquired during proliferationPubMed=28445466
MutationSimpleKRASp.Gly12Asp (c.35G>A)Unspecified-PubMed=29786757

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10,11
D13S317
11,12
D16S539
11,13
D18S51
9
D19S433
14,15
D21S11
30
D2S1338
17,23
D3S1358
14,19
D5S818
7,13
D7S820
8,11
D8S1179
12,15
FGA
21,22
Penta D
9,13
Penta E
12
TH01
9.3
TPOX
8
vWA
17
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Quantitative proteomics of the Cancer Cell Line Encyclopedia.";

Sellers W.R., Gygi S.P.

Cell 180:387-402.e16(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Resolution of novel pancreatic ductal adenocarcinoma subtypes by global phosphotyrosine profiling.

Biankin A.V., Wu J.-M., Daly R.J.

Mol. Cell. Proteomics 15:2671-2685(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors.

Manning G., Settleman J., Hatzivassiliou G., Evangelista M.

Proc. Natl. Acad. Sci. U.S.A. 112:E4410-E4417(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

A resource for cell line authentication, annotation and quality control.

Neve R.M.

Nature 520:307-311(2015).

A comprehensive transcriptional portrait of human cancer cell lines.

Settleman J., Seshagiri S., Zhang Z.-M.

Nat. Biotechnol. 33:306-312(2015).

KRAS mutational subtype and copy number predict in vitro response of human pancreatic cancer cell lines to MEK inhibition.

Linnartz R., Zubel A., Slamon D.J., Finn R.S.

Br. J. Cancer 111:1788-1801(2014).

Essential gene profiles in breast, pancreatic, and ovarian cancer cells.

Rottapel R., Neel B.G., Moffat J.

Cancer Discov. 2:172-189(2012).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Phenotype and genotype of pancreatic cancer cell lines.";

Scaife C.L., Firpo M.A., Mulvihill S.J.

Pancreas 39:425-435(2010).

A resource for analysis of microRNA expression and function in pancreatic ductal adenocarcinoma cells.

Mendell J.T.

Cancer Biol. Ther. 8:2013-2024(2009).

Identification of SMURF1 as a possible target for 7q21.3-22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization.

Shiratori K., Hirohashi S., Inazawa J., Imoto I.

Cancer Sci. 99:986-994(2008).

Identifying allelic loss and homozygous deletions in pancreatic cancer without matched normals using high-density single-nucleotide polymorphism arrays.

Kern S.E.

Cancer Res. 66:7920-7928(2006).

Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications.

Gorunova L., van Kessel A.G., Schoenmakers E.F.P.M., Hoglund M.

Oncogene 24:1794-1801(2005).

Genome-wide array-based comparative genomic hybridization reveals multiple amplification targets and novel homozygous deletions in pancreatic carcinoma cell lines.

Veltman J.A., van Kessel A.G., Hoglund M.

Cancer Res. 64:3052-3059(2004).

Characterization of the mutations of the K-ras, p53, p16, and SMAD4 genes in 15 human pancreatic cancer cell lines.

Sun C.-L., Yamato T., Furukawa T., Ohnishi Y., Kijima H., Horii A.

Oncol. Rep. 8:89-92(2001).

Specific chromosomal aberrations and amplification of the AIB1 nuclear receptor coactivator gene in pancreatic carcinomas.

Meltzer P.S., Ried T.

Am. J. Pathol. 154:525-536(1999).

A new human pancreatic carcinoma cell line developed for adoptive immunotherapy studies with lymphokine-activated killer cells in nude mice.

Holder W.D. Jr.

In Vitro Cell. Dev. Biol. 24:1179-1187(1988).