JHOS-4Homo sapiens (Human)Cancer cell line

Also known as: JHOS4

🤖 AI SummaryBased on 9 publications

Quick Overview

Human ovarian cancer cell line with high genomic similarity to HGSOC.

Detailed Summary

JHOS-4 is a human ovarian cancer cell line derived from high-grade serous ovarian cancer (HGSOC). It exhibits strong genomic and proteomic similarities to HGSOC tumors, making it a valuable model for studying this aggressive cancer subtype. The cell line shows characteristics consistent with HGSOC, including TP53 mutations and specific gene expression profiles. It has been identified as a suitable model for preclinical studies due to its close resemblance to HGSOC tumors in terms of copy-number alterations and mutational profiles. JHOS-4 is also noted for its potential in drug sensitivity studies, particularly in relation to targeted therapies and molecular profiling.

Research Applications

Genomic profilingProteomic analysisDrug sensitivity studiesMolecular characterization

Key Characteristics

High genomic similarity to HGSOCTP53 mutationsSpecific gene expression profilesSuitability for preclinical studies
Generated on 6/21/2025

Basic Information

Database IDCVCL_4649
SpeciesHomo sapiens (Human)
Tissue SourcePeritoneum[UBERON:UBERON_0002358]

Donor Information

Age44
Age CategoryAdult
SexFemale
Raceasian

Disease Information

DiseaseHigh grade ovarian serous adenocarcinoma
LineageOvary/Fallopian Tube
SubtypeHigh-Grade Serous Ovarian Cancer
OncoTree CodeHGSOC

DepMap Information

Source TypeRIKEN
Source IDACH-000584_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
MutationSimpleTP53p.Val147Gly (c.440T>G)Homozygous-Unknown

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
10
D13S317
11
D16S539
9,10
D21S11
29,31.2
D5S818
11
D7S820
10
TH01
7
TPOX
8,12
vWA
14
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types.

van 't Veer L.J., Butte A.J., Goldstein T., Sirota M.

Nat. Commun. 10:3574.1-3574.11(2019).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Integrated genomic, epigenomic, and expression analyses of ovarian cancer cell lines.

Velculescu V.E., Scharpf R.B.

Cell Rep. 25:2617-2633(2018).

Characterization of human cancer cell lines by reverse-phase protein arrays.

Liang H.

Cancer Cell 31:225-239(2017).

Integrative proteomic profiling of ovarian cancer cell lines reveals precursor cell associated proteins and functional status.

Tyanova S., Montag A., Lastra R.R., Lengyel E., Mann M.

Nat. Commun. 7:12645.1-12645.14(2016).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.

Loewer M., Sahin U., Castle J.C.

Genome Med. 7:118.1-118.7(2015).

Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.

Golub T.R., Root D.E., Hahn W.C.

Sci. Data 1:140035-140035(2014).

Evaluating cell lines as tumour models by comparison of genomic profiles.

Domcke S., Sinha R., Levine D.A., Sander C., Schultz N.

Nat. Commun. 4:2126.1-2126.10(2013).

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.

Nature 483:603-607(2012).

Web Resources