NCI-H3122Homo sapiens (Human)Cancer cell line

Also known as: NCIH3122, H-3122, H3122

AI Summary

No AI-generated summary available for this cell line.

Basic Information

Database IDCVCL_5160
SpeciesHomo sapiens (Human)
Tissue SourcePleural effusion[UBERON:UBERON_0000175]

Donor Information

Age CategoryUnknown
SexMale

Disease Information

DiseaseLung adenocarcinoma
LineageLung
SubtypeLung Adenocarcinoma
OncoTree CodeLUAD

DepMap Information

Source TypeAcademic lab
Source IDACH-000337_source

Known Sequence Variations

TypeGene/ProteinDescriptionZygosityNoteSource
Gene fusionALKEML4-ALK-E6A20 v3 fusionPubMed=35933914, PubMed=31882684

Haplotype Information (STR Profile)

Short Tandem Repeat (STR) profile for cell line authentication.

Amelogenin
X
CSF1PO
11,12
D13S317
10,12
D16S539
11,12
D18S51
13,16
D5S818
11,12
D7S820
8,12
D8S1179
13,15
FGA
18,21
Penta D
10,13
Penta E
12
TH01
7,9.3
TPOX
10
vWA
16
Gene Expression Profile
Gene expression levels and statistical distribution
Loading cohorts...
Full DepMap dataset with combined data across cell lines

Loading gene expression data...

Publications

Pan-cancer proteomic map of 949 human cell lines.";

Robinson P.J., Zhong Q., Garnett M.J., Reddel R.R.

Cancer Cell 40:835-849.e8(2022).

From clinical specimens to human cancer preclinical models -- a journey the NCI-cell line database-25 years later.

Aldige C.R., Wistuba I.I., Minna J.D.

J. Cell. Biochem. 121:3986-3999(2020).

Next-generation characterization of the Cancer Cell Line Encyclopedia.

Sellers W.R.

Nature 569:503-508(2019).

Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens.

Stronach E.A., Saez-Rodriguez J., Yusa K., Garnett M.J.

Nature 568:511-516(2019).

An interactive resource to probe genetic diversity and estimated ancestry in cancer cell lines.

Dutil J., Chen Z.-H., Monteiro A.N.A., Teer J.K., Eschrich S.A.

Cancer Res. 79:1263-1273(2019).

Chemistry-first approach for nomination of personalized treatment in lung cancer.

Posner B.A., Minna J.D., Kim H.S., White M.A.

Cell 173:864-878.e29(2018).

Differential effector engagement by oncogenic KRAS.";

McCormick F.

Cell Rep. 22:1889-1902(2018).

A landscape of pharmacogenomic interactions in cancer.";

Wessels L.F.A., Saez-Rodriguez J., McDermott U., Garnett M.J.

Cell 166:740-754(2016).

Comparative proteome analysis across non-small cell lung cancer cell lines.

Daub H.

J. Proteomics 130:1-10(2016).

The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer.

Engelman J.A.

Cancer Discov. 4:662-673(2014).

Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer.

Chung D.H., Heo D.S.

J. Thorac. Oncol. 8:415-422(2013).

Proteomic profiling identifies dysregulated pathways in small cell lung cancer and novel therapeutic targets including PARP1.

Heymach J.V.

Cancer Discov. 2:798-811(2012).

Lung cancer cell lines as tools for biomedical discovery and research.

Gazdar A.F., Girard L., Lockwood W.W., Lam W.L., Minna J.D.

J. Natl. Cancer Inst. 102:1310-1321(2010).

EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer.

Janne P.A.

Clin. Cancer Res. 14:4275-4283(2008).

Sensitivity of non-small-cell lung cancer cell lines established from patients treated with prolonged infusions of paclitaxel.

Breathnach O.S., Johnson B.E.

Oncology 64:399-406(2003).

Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer.

Modi S., Kubo A., Oie H.K., Coxon A.B., Rehmatulla A., Kaye F.J.

Oncogene 19:4632-4639(2000).

Loss of spindly sensitizes EML4-ALK v3 lung cancer cells to HSP90 inhibitors.

Workman P.

bioRxiv 2022:06.08.495301-06.08.495301(2022).